Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Chem Toxicol ; 175: 113708, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36889430

RESUMEN

Homemade e-liquids and power-adjustable vaping devices may carry higher risks than commercial formulations and fixed-power devices. This study used human macrophage-like and bronchial epithelial (NHBE) cell cultures to investigate toxicity of homemade e-liquids containing propylene glycol and vegetable glycerin (PG/VG), nicotine, vitamin E acetate (VEA), medium-chain fatty acids (MCFAs), phytol, and cannabidiol (CBD). SmallAir™ organotypic epithelial cultures were exposed to aerosols generated at different power settings (10-50 W). Carbonyl levels were measured, and endpoints reflecting epithelial function (ciliary beating frequency [CBF]), integrity (transepithelial electrical resistance [TEER]), and structure (histology) were investigated. Treatment with nicotine or VEA alone or with PG/VG did not impact cell viability. CBD, phytol, and lauric acid caused cytotoxicity in both culture systems and increased lipid-laden macrophages. Exposure of SmallAir™ organotypic cultures to CBD-containing aerosols resulted in tissue injury and loss of CBF and TEER, while PG/VG alone or with nicotine or VEA did not. Aerosols generated with higher power settings had higher carbonyl concentrations. In conclusion, the presence and concentration of certain chemicals and device power may induce cytotoxicity in vitro. These results raise concerns that power-adjustable devices may generate toxic compounds and suggest that toxicity assessments should be conducted for both e-liquid formulations and their aerosols.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Vapeo , Humanos , Nicotina/toxicidad , Nicotina/química , Bronquios , Verduras , Aerosoles/toxicidad , Glicerol/química , Propilenglicol/química
2.
Sci Rep ; 12(1): 17041, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36220878

RESUMEN

During the coronavirus disease (COVID-19) pandemic, wearing face masks in public spaces became mandatory in most countries. The risk of self-contamination when handling face masks, which was one of the earliest concerns, can be mitigated by adding antiviral coatings to the masks. In the present study, we evaluated the antiviral effectiveness of sodium chloride deposited on a fabric suitable for the manufacturing of reusable cloth masks using techniques adapted to the home environment. We tested eight coating conditions, involving both spraying and dipping methods and three salt dilutions. Influenza A H3N2 virus particles were incubated directly on the salt-coated materials, collected, and added to human 3D airway epithelial cultures. Live virus replication in the epithelia was quantified over time in collected apical washes. Relative to the non-coated material, salt deposits at or above 4.3 mg/cm2 markedly reduced viral replication. However, even for larger quantities of salt, the effectiveness of the coating remained dependent on the crystal size and distribution, which in turn depended on the coating technique. These findings confirm the suitability of salt coating as antiviral protection on cloth masks, but also emphasize that particular attention should be paid to the coating protocol when developing consumer solutions.


Asunto(s)
COVID-19 , SARS-CoV-2 , Antivirales/farmacología , COVID-19/prevención & control , Humanos , Técnicas In Vitro , Subtipo H3N2 del Virus de la Influenza A , Máscaras , Cloruro de Sodio/farmacología
3.
J Am Soc Mass Spectrom ; 33(11): 2147-2155, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36218284

RESUMEN

Inhalation as a route for administering drugs and dietary supplements has garnered significant attention over the past decade. We performed real-time analyses of aerosols using secondary electrospray ionization (SESI) technology interfaced with high-resolution mass spectrometry (HRMS), primarily developed for exhaled breath analysis with the goal to detect the main aerosol constituents. Several commercially available inhalation devices containing caffeine, melatonin, cannabidiol, and vitamin B12 were tested. Chemical characterization of the aerosols produced by these devices enabled detection of the main constituents and screening for potential contaminants, byproducts, and impurities in the aerosol. In addition, a programmable syringe pump was connected to the SESI-HRMS system to monitor aerosolized active pharmaceutical ingredients (APIs) such as chloroquine, hydroxychloroquine, and azithromycin. This setup allowed us to detect caffeine, melatonin, hydroxychloroquine, chloroquine, and cannabidiol in the produced aerosols. Azithromycin and vitamin B12 in the aerosols could not be detected; however, our instrument setup enabled the detection of vitamin B12 breakdown products that were generated during the aerosolization process. Positive control was realized by liquid chromatography-HRMS analyses. The compounds detected in the aerosol were confirmed by exact mass measurements of the protonated and/or deprotonated species, as well as their respective collision-induced dissociation tandem mass spectra. These results reveal the potential wide application of this technology for the real-time monitoring of aerosolized active pharmaceutical ingredients that can be administered through the inhalation route.


Asunto(s)
Cannabidiol , Melatonina , Espectrometría de Masa por Ionización de Electrospray/métodos , Cafeína , Azitromicina , Hidroxicloroquina , Aerosoles/análisis , Vitamina B 12
4.
AAPS J ; 24(1): 33, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35132508

RESUMEN

In vitro screening for pharmacological activity of existing drugs showed chloroquine and hydroxychloroquine to be effective against severe acute respiratory syndrome coronavirus 2. Oral administration of these compounds to obtain desired pulmonary exposures resulted in dose-limiting systemic toxicity in humans. However, pulmonary drug delivery enables direct and rapid administration to obtain higher local tissue concentrations in target tissue. In this work, inhalable formulations for thermal aerosolization of chloroquine and hydroxychloroquine were developed, and their physicochemical properties were characterized. Thermal aerosolization of 40 mg/mL chloroquine and 100 mg/mL hydroxychloroquine formulations delivered respirable aerosol particle sizes with 0.15 and 0.33 mg per 55 mL puff, respectively. In vitro toxicity was evaluated by exposing primary human bronchial epithelial cells to aerosol generated from Vitrocell. An in vitro exposure to 7.24 µg of chloroquine or 7.99 µg hydroxychloroquine showed no significant changes in cilia beating, transepithelial electrical resistance, and cell viability. The pharmacokinetics of inhaled aerosols was predicted by developing a physiologically based pharmacokinetic model that included a detailed species-specific respiratory tract physiology and lysosomal trapping. Based on the model predictions, inhaling emitted doses comprising 1.5 mg of chloroquine or 3.3 mg hydroxychloroquine three times a day may yield therapeutically effective concentrations in the lung. Inhalation of higher doses further increased effective concentrations in the lung while maintaining lower systemic concentrations. Given the theoretically favorable risk/benefit ratio, the clinical significance for pulmonary delivery of aerosolized chloroquine and hydroxychloroquine to treat COVID-19 needs to be established in rigorous safety and efficacy studies. Graphical abstract.


Asunto(s)
Antimaláricos/administración & dosificación , Tratamiento Farmacológico de COVID-19 , Cloroquina/administración & dosificación , Hidroxicloroquina/administración & dosificación , Modelos Químicos , Administración por Inhalación , Animales , Antimaláricos/farmacocinética , Antimaláricos/toxicidad , Células Cultivadas , Evaluación Preclínica de Medicamentos , Humanos , Hidroxicloroquina/farmacocinética , Hidroxicloroquina/toxicidad , Masculino , Ratones , Persona de Mediana Edad , Ratas
5.
Toxicol In Vitro ; 79: 105277, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34843886

RESUMEN

Assessment of aerosols effects on liver CYP function generally involves aqueous fractions (AF). Although easy and efficient, this method has not been optimized recently or comparatively assessed against other aerosol exposure methods. Here, we comparatively evaluated the effects of the AFs of cigarette smoke (CS) and Tobacco Heating System (THS) aerosols on CYP activity in liver spheroids. We then used these data to develop a physiological aerosol exposure system combining a multi-organs-on-a-chip, 3D lung tissues, liver spheroids, and a direct aerosol exposure system. Liver spheroids incubated with CS AF showed a dose-dependent increase in CYP1A1/1B1, CYP1A2, and CYP2B6 activity and a dose-dependent decrease in CYP2C9, CYP2D6, and CYP3A4 activity relative to untreated tissues. In our physiological exposure system, repeated CS exposure of the bronchial tissues also caused CYP1A1/1B1 and CYP1A2 induction in the bronchial tissues and liver spheroids; but the spheroids showed an increase in CYP3A4 activity and no effect on CYP2C9 or CYP2D6 activity relative to air-exposed tissues, which resembles the results reported in smokers. THS aerosol did not affect CYP activity in bronchial or liver tissues, even at 4 times higher concentrations than CS. In conclusion, our system allows us to physiologically test the effects of CS or other aerosols on lung and liver tissues cultured in the same chip circuit, thus delivering more in vivo like data.


Asunto(s)
Aerosoles/toxicidad , Sistema Enzimático del Citocromo P-450/metabolismo , Hígado/efectos de los fármacos , Pulmón/efectos de los fármacos , Células Cultivadas , Sistema Enzimático del Citocromo P-450/efectos de los fármacos , Humanos , Hígado/enzimología , Hígado/metabolismo , Humo/efectos adversos , Esferoides Celulares/efectos de los fármacos , Análisis de Matrices Tisulares/métodos , Productos de Tabaco/efectos adversos , Pruebas de Toxicidad/métodos
6.
Food Chem Toxicol ; 157: 112577, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34563633

RESUMEN

Trehalose is added in drug formulations to act as fillers or improve aerosolization performance. Its characteristics as a carrier molecule have been explored; however, the fate of trehalose in human airway tissues has not been thoroughly investigated. Here, we investigated the fate of nebulized trehalose using in vitro human air-liquid bronchial epithelial cultures. First, a tracing experiment was conducted using 13C12-trehalose; we measured trehalose distribution in different culture compartments (apical surface liquid, epithelial culture, and basal side medium) at various time points following acute exposure to 13C12-labeled trehalose. We found that 13C12-trehalose was metabolized into 13C6-glucose. The data was then used to model the kinetics of trehalose disappearance from the apical surface of bronchial cultures. Secondly, we evaluated the potential adverse effects of nebulized trehalose on the bronchial cultures after they were acutely exposed to nebulized trehalose up to a level just below its solubility limit (50 g/100 g water). We assessed the ciliary beating frequency and histological characteristics. We found that nebulized trehalose did not lead to marked alteration in ciliary beating frequency and morphology of the epithelial cultures. The in vitro testing approach used here may enable the early selection of excipients for future development of inhalation products.


Asunto(s)
Bronquios/efectos de los fármacos , Mucosa Respiratoria/efectos de los fármacos , Trehalosa/farmacología , Aerosoles/administración & dosificación , Aerosoles/farmacocinética , Aerosoles/farmacología , Bronquios/metabolismo , Células Cultivadas , Humanos , Nebulizadores y Vaporizadores , Mucosa Respiratoria/metabolismo , Trehalosa/administración & dosificación , Trehalosa/farmacocinética
7.
Arch Toxicol ; 95(10): 3341-3359, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34313809

RESUMEN

Aging and smoking are major risk factors for cardiovascular diseases (CVD). Our in vitro study compared, in the context of aging, the effects of the aerosol of Tobacco Heating System 2.2 (THS; an electrically heated tobacco product) and 3R4F reference cigarette smoke (CS) on processes that contribute to vascular pathomechanisms leading to CVD. Young and old human aortic smooth muscle cells (HAoSMC) were exposed to various concentrations of aqueous extracts (AE) from 3R4F CS [0.014-0.22 puffs/mL] or THS aerosol [0.11-1.76 puffs/mL] for 24 h. Key markers were measured by high-content imaging, transcriptomics profiling and multianalyte profiling. In our study, in vitro aging increased senescence, DNA damage, and inflammation and decreased proliferation in the HAoSMCs. At higher concentrations of 3R4F AE, young HAoSMCs behaved similarly to aged cells, while old HAoSMCs showed additional DNA damage and apoptosis effects. At 3R4F AE concentrations with the maximum effect, the THS AE showed no significant effect in young or old HAoSMCs. It required an approximately ten-fold higher concentration of THS AE to induce effects similar to those observed with 3R4F. These effects were independent of nicotine, which did not show a significant effect on HAoSMCs at any tested concentration. Our results show that 3R4F AE accelerates aging in young HAoSMCs and exacerbates the aging effect in old HAoSMCs in vitro, consistent with CS-related contributions to the risk of CVD. Relative to 3R4F AE, the THS AE showed a significantly reduced impact on HAoSMCs, suggesting its lower risk for vascular SMC-associated pathomechanisms leading to CVD.


Asunto(s)
Envejecimiento Prematuro/etiología , Miocitos del Músculo Liso/efectos de los fármacos , Nicotiana/efectos adversos , Humo/efectos adversos , Aerosoles , Aorta/citología , Aorta/efectos de los fármacos , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Senescencia Celular , Daño del ADN/efectos de los fármacos , Humanos , Inflamación/etiología , Miocitos del Músculo Liso/patología , Fumar/efectos adversos , Productos de Tabaco
8.
Am J Dent ; 34(2): 63-69, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33940661

RESUMEN

PURPOSE: To compare the effects of whitening toothpaste and bleaching with 6% hydrogen peroxide (H2O2) on discoloration of dental resin composite caused by cigarette smoke (CS) and electronic vapor product (EVP) aerosol. METHODS: 40 resin composite discs were divided into three groups: 15 each for CS and EVP aerosol exposure and 10 for air exposure (control). Exposures were performed for 15 days, with daily brushing with regular toothpaste. Two whitening sessions, including 21 days of brushing with whitening toothpaste and 3 days of treatments with take-home bleaching (6% H2O2), were performed after the exposure. Color and gloss were assessed before exposure, at every 5 days of exposure, and after each whitening session. RESULTS: After 15 days of exposure, marked discoloration of resin composite was observed in the CS group (ΔE = 23.66 ± 2.31), minimal color change in the EVP group ((ΔE = 2.77 ± 0.75), and no color change in the control group. Resin composites exposed to CS did not recover their original color after treatment with whitening toothpaste ((ΔE = 20.17 ± 2.68) or take-home bleaching ((ΔE = 19.32 ± 2.53), but those exposed to EVP aerosol reverted to baseline after treatment with whitening toothpaste ((ΔE = 0.98 ± 0.37), and no further change in color was observed following take-home bleaching. The gloss of resin composites exposed to CS, EVP aerosol, and air decreased equally with exposure time. Brushing with whitening toothpaste recovered the gloss similarly in all groups, but no further change was observed following take-home bleaching. CLINICAL SIGNIFICANCE: Aerosol from electronic vapor products induced minimal discoloration of resin composites that can be completely reverted by brushing with whitening toothpaste alone. Bleaching with 6% H2O2 did not revert discoloration caused by cigarette smoke. Whitening toothpaste could help revert the decreased gloss of resin composites.


Asunto(s)
Peróxido de Hidrógeno , Pastas de Dientes , Aerosoles , Electrónica , Peróxido de Hidrógeno/efectos adversos , Fumar
9.
Toxicol Lett ; 337: 98-110, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33220401

RESUMEN

Exposure to aerosol from electronic vapor (e-vapor) products has been suggested to result in less risk of harm to smokers than cigarette smoke (CS) exposure. Although many studies on e-vapor products have tested the effects of liquid formulations on cell cultures, few have evaluated the effects of aerosolized formulations. We examined the effects of acute exposure to the aerosol of an e-vapor device that uses the MESH® technology (IQOS® MESH, Philip Morris International) and to CS from the 3R4F reference cigarette on human organotypic bronchial epithelial culture and alveolar triculture models. In contrast to 3R4F CS exposure, exposure to the IQOS MESH aerosol (Classic Tobacco flavor) did not cause cytotoxicity in bronchial epithelial cultures or alveolar tricultures despite its greater concentrations of deposited nicotine (3- and 4-fold, respectively). CS exposure caused a marked decrease in the frequency and active area of ciliary beating in bronchial cultures, whereas IQOS MESH aerosol exposure did not. Global mRNA expression and secreted protein profiles revealed a significantly lower impact of IQOS MESH aerosol exposure than 3R4F CS exposure. Overall, our whole aerosol exposure study shows a clearly reduced impact of IQOS MESH aerosol relative to CS in bronchial and alveolar cultures, even at greater nicotine doses.


Asunto(s)
Bronquios/efectos de los fármacos , Sistemas Electrónicos de Liberación de Nicotina , Alveolos Pulmonares/efectos de los fármacos , Humo/efectos adversos , Adenilato Quinasa/metabolismo , Adulto , Aerosoles , Supervivencia Celular/efectos de los fármacos , Cilios/efectos de los fármacos , Humanos , Masculino , Nicotina/química , Técnicas de Cultivo de Órganos , ARN Mensajero/biosíntesis , Nicotiana , Transcripción Genética/efectos de los fármacos
10.
Artículo en Inglés | MEDLINE | ID: mdl-32585495

RESUMEN

Tobacco smoking contributes to tooth discoloration. Pigmented compounds in the smoke generated by combustion of tobacco can cause discoloration of dental hard tissues. However, aerosols from heated tobacco products cause less discoloration than cigarette smoke (CS) in vitro. The objective of the present study was to optimize a method for extracting the colored chemical compounds deposited on tooth enamel following exposure to total particulate matter (TPM) from CS or a heated tobacco product (Tobacco Heating System [THS] 2.2), analyze the extracts by gas chromatography coupled to time-of-flight mass spectrometry, and identify the key chemicals associated with tooth discoloration. Sixty bovine enamel blocks were exposed for 2 weeks to TPM from CS or THS 2.2 aerosol or to artificial saliva as a control. Brushing without toothpaste and color measurements were performed each week. Noticeable discoloration of enamel was observed following exposure to CS TPM. The discoloration following exposure to THS 2.2 aerosol TPM or artificial saliva was not distinguishable to the eye (ΔE < 3.3). Carbon disulfide was used to extract surface-deposited chemicals. Untargeted analyses were followed by partial least squares correlation against discoloration scores (R2 = 0.96). Eleven compounds had variable importance in projection scores greater than 2. Discriminant autocorrelation matrix calculation of their mass spectral information identified eight of the eleven compounds as terpenoids. None of the compounds were related to nicotine. Several of these compounds were also detected in THS 2.2 aerosol TPM-exposed enamel, but at lower levels, in line with our findings showing less discoloration. Compared with CS TPM exposure, THS 2.2 aerosol TPM exposure resulted in lower deposition of color-related compounds on enamel surface, consistent with minimal discoloration of dental enamel.


Asunto(s)
Esmalte Dental/efectos de los fármacos , Nicotiana/química , Material Particulado/análisis , Humo/análisis , Decoloración de Dientes , Aerosoles/química , Animales , Bovinos , Esmalte Dental/patología , Cromatografía de Gases y Espectrometría de Masas/métodos , Calor , Humo/efectos adversos , Fumar
11.
Toxicol In Vitro ; 67: 104909, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32512146

RESUMEN

The dose of inhaled materials delivered to the respiratory tract is to a large extent a function of the kinetics of particle deposition and gas dissolution on or in the airway and lung epithelia, and therefore of the structural and functional properties of the respiratory tract. In vitro aerosol exposure systems commonly do not simulate these properties, which may result in the delivery of non-realistic, non-human-relevant doses of inhalable test substances to the in vitro biological test systems. We developed a new-generation in vitro aerosol exposure system, the InHALES, that can, like the human respiratory tract, actively breathe, operate medical inhalers, or take puffs from tobacco products. Due to its structural and functional similarity to the human respiratory tract, the system is expected to deliver human-relevant doses of inhalable materials to cell cultures representing respiratory tract epithelia. We here describe the proof of concept of the InHALES with respect to aerosol delivery and compatibility with oral, bronchial, and alveolar cell cultures. The results indicate that the system structure and function translate into complex patterns of test atmosphere delivery that, with increasing system complexity, may closely mimic the patterns observable in the human respiratory tract.


Asunto(s)
Aerosoles/administración & dosificación , Técnicas de Cultivo de Célula , Pulmón , Modelos Biológicos , Administración por Inhalación , Aire , Humanos
12.
Chem Res Toxicol ; 33(2): 505-514, 2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-31909610

RESUMEN

Chemical and physical characterization of transported evolving aerosols in an in vitro system is complex. The challenges include appropriate sampling sensitivity, measurement capabilities, and performing online measurements of constituents in the flowing aerosol during exposure. We assessed the performance of single-photon ionization mass spectrometry in measuring aerosol properties within an in vitro aerosol exposure system. The sampling efficiency of the instrument was studied under three protocols to capture the evolving aerosol process inside the exposure system, and it was evaluated using computational fluid dynamics modeling. The changes in the aerosol as dilution is applied show not only a reduction in concentration of the traced substances but also selective sampling due to evolution of the aerosol and (gas/liquid) phase partitioning of the substances forming the aerosol or a change in the aerosol properties. These effects have potentially a direct impact on the delivered dose, as aerosol deposition is dependent on particle size. Dilution affects the chemical concentration of the substances as well as the interconnected physical properties of the aerosol; therefore, the experimental design of in vitro studies should not only report the dilution flow rates but also details of the applied dilution protocol. This adds a layer of complexity to the design and comparison of studies. We also discuss the potential and limitations of single-photon ionization mass spectrometry as a tool in in vitro monitoring of aerosols.


Asunto(s)
Aerosoles/administración & dosificación , Aerosoles/análisis , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente , Fotones , Espectrometría de Masas , Tamaño de la Partícula
13.
Toxicol Rep ; 6: 1206-1215, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31768332

RESUMEN

The adverse effects of cigarette smoking are well documented, and the two main strategies for reducing smoking prevalence are prevention of smoking initiation and promotion of smoking cessation. More recently, a third and complementary avenue, tobacco harm reduction has emerged, which is aimed to reduce the burden of smoking-related diseases. This has been enabled by the development of novel products such as electronic cigarettes (e-cigarettes) and heated tobacco products, designed to deliver nicotine with significantly reduced levels of the toxicants that are emitted by cigarettes. Several potential modified risk tobacco products (pMRTP) have been reported to emit significantly less toxicants than cigarettes and significantly reduce toxicant exposure in smokers who switch completely to such products. These are two prerequisites for pMRTPs to reduce harm and the risk of smoking-related disease. However, concerns remain regarding the addictive nature of these products. Smoking addiction is a complex phenomenon involving multiple pharmacological and non-pharmacological factors. Although the main pharmacological substance associated with smoking addiction is nicotine, accumulating evidence suggests that nicotine mostly acts as a primary reinforcer and that other factors are involved in establishing smoking addiction. Inhibition of monoamine oxidases (MAO)-mammalian flavoenzymes with a central role in neurotransmitter metabolism-has also been suggested to be involved in this process. Therefore, we aimed to comparatively investigate the ability of several types of pMRTPs and cigarette smoke (3R4F) to inhibit MAO activity. The results showed that the heated tobacco product Tobacco Heating System (THS) 2.2 and the MESH 1.1 e-cigarette possessed no MAO inhibitory activity while 3R4F significantly inhibits the levels of MAO activity (3R4F MAO-A and B; > 2 µM nicotine). Snus products have similar inhibition profiles as 3R4F but for larger nicotine concentrations (snus MAO-A; ∼68-fold, snus MAO-B; ∼23-fold higher compared to 3R4F). These observations were confirmed by analytical datasets of potential MAO inhibitors emitted by these products. In conclusion, we have demonstrated that specific pMRTPs, namely THS 2.2 and MESH 1.1, have a significantly lower MAO-inhibitory activity than 3R4F. These findings provide a basis for further investigation of the role of MAO inhibitors in cigarette addiction as well as the implications of the findings for abuse liability of pMRTPs in comparison with cigarettes.

14.
Arch Toxicol ; 93(11): 3229-3247, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31494692

RESUMEN

We previously proposed a systems toxicology framework for in vitro assessment of e-liquids. The framework starts with the first layer aimed at screening the potential toxicity of e-liquids, followed by the second layer aimed at investigating the toxicity-related mechanism of e-liquids, and finally, the third layer aimed at evaluating the toxicity-related mechanism of the corresponding aerosols. In this work, we applied this framework to assess the impact of the e-liquid MESH Classic Tobacco and its aerosol compared with that of cigarette smoke (CS) from the 3R4F reference cigarette. In the first layer, we evaluated the cytotoxicity profile of the MESH Classic Tobacco e-liquid (containing humectants, nicotine, and flavors) and its Base e-liquid (containing humectant and nicotine only) in comparison with total particulate matter (TPM) of 3R4F CS using primary bronchial epithelial cell cultures. In the second layer, the same culture model was used to explore changes in specific markers using high-content screening assays to identify potential toxicity-related mechanisms induced by the MESH Classic Tobacco and Base e-liquids beyond cell viability in comparison with the 3R4F CS TPM-induced effects. Finally, in the third layer, we compared the impact of exposure to the MESH Classic Tobacco or Base aerosols with 3R4F CS using human organotypic air-liquid interface buccal and small airway epithelial cultures. The results showed that the cytotoxicity of the MESH Classic Tobacco liquid was similar to the Base liquid but lower than 3R4F CS TPM at comparable nicotine concentrations. Relative to 3R4F CS exposure, MESH Classic Tobacco aerosol exposure did not cause tissue damage and elicited lower changes in the mRNA, microRNA, and protein markers. In the context of tobacco harm reduction strategy, the framework is suitable to assess the potential-reduced impact of electronic cigarette aerosol relative to CS.


Asunto(s)
Aerosoles/toxicidad , Bronquios/efectos de los fármacos , Sistemas Electrónicos de Liberación de Nicotina , Células Epiteliales/efectos de los fármacos , Productos de Tabaco/toxicidad , Adenilato Quinasa/metabolismo , Bronquios/metabolismo , Bronquios/patología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , Masculino , Persona de Mediana Edad , Cultivo Primario de Células , Proteoma/metabolismo , Pruebas de Toxicidad , Transcriptoma/efectos de los fármacos
15.
J Dent ; 89: 103182, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31430508

RESUMEN

OBJECTIVES: To compare the relative effects of cigarette smoke (CS), electronic cigarette (EC), red wine, coffee, and soy sauce on the color of enamel, dentin, and composite resin restorations, as well as the effects of whitening treatments. METHODS: Seventy premolars with composite restorations were exposed to CS, EC aerosol (a novel EC device with MESH™ technology [P4M3 version 1.0, Philip Morris International]), red wine, coffee, and soy sauce for 56 min/day for 15 days. Two whitening sessions with 6% and 35% hydrogen peroxide (H2O2) were performed on the exposed samples. Teeth exposed to CS and EC aerosol were also brushed with whitening toothpaste for 3 weeks. Color match of resin restorations was assessed, and color changes were compared after exposure and after whitening treatments. RESULTS: Discolorations in enamel, dentin, and composite resin were observed in the order of red wine > CS > soy sauce > coffee > EC. Color mismatch between enamel and resin restorations occurred only in red wine and CS groups. Brushing with whitening toothpaste removed discoloration caused by EC aerosol; H2O2 treatments were necessary to eliminate discolorations caused by coffee and soy sauce. Discolorations of dentin and resin restorations could not be completely removed by whitening treatments, and color mismatch remained in teeth exposed to red wine and CS. CONCLUSION: Red wine and CS cause significant tooth discoloration and color mismatch in enamel and resin restorations that are not reversible by whitening treatments. Tooth discoloration associated with EC aerosol was minimal and could be removed by brushing with whitening toothpaste. CLINICAL SIGNIFICANCE: Red wine drinkers and cigarette smokers have increased risks for tooth discoloration and color mismatch between enamel and composite resin restorations. Whitening treatments may not be effective in correcting the color mismatch. Tooth discoloration associated with EC aerosol is minimal.


Asunto(s)
Resinas Compuestas/farmacología , Peróxido de Hidrógeno/farmacología , Decoloración de Dientes/tratamiento farmacológico , Diente/efectos de los fármacos , Color , Resinas Compuestas/química , Dureza , Humanos , Blanqueadores Dentales/farmacología , Decoloración de Dientes/patología
16.
Intern Emerg Med ; 14(6): 863-883, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30835057

RESUMEN

In the context of tobacco harm-reduction strategy, the potential reduced impact of electronic cigarette (EC) exposure should be evaluated relative to the impact of cigarette smoke exposure. We conducted a series of in vitro studies to compare the biological impact of an acute exposure to aerosols of "test mix" (flavors, nicotine, and humectants), "base" (nicotine and humectants), and "carrier" (humectants) formulations using MarkTen® EC devices with the impact of exposure to smoke of 3R4F reference cigarettes, at a matching puff number, using human organotypic air-liquid interface buccal and small airway cultures. We measured the concentrations of nicotine and carbonyls deposited in the exposure chamber after each exposure experiment. The deposited carbonyl concentrations were used as representative measures to assess the reduced exposure to potentially toxic volatile substances. We followed a systems toxicology approach whereby functional biological endpoints, such as histopathology and ciliary beating frequency, were complemented by multiplex and omics assays to measure secreted inflammatory proteins and whole-genome transcriptomes, respectively. Among the endpoints analyzed, the only parameters that showed a significant response to EC exposure were secretion of proteins and whole-genome transcriptomes. Based on the multiplex and omics analyzes, the cellular responses to EC aerosol exposure were tissue type-specific; however, those alterations were much smaller than those following cigarette smoke exposure, even when the EC aerosol exposure under the testing conditions resulted in a deposited nicotine concentration approximately 200 times that in saliva of EC users.


Asunto(s)
Fumar Cigarrillos/metabolismo , Cigarrillo Electrónico a Vapor/metabolismo , Exposición a Riesgos Ambientales/análisis , Cigarrillo Electrónico a Vapor/análisis , Cigarrillo Electrónico a Vapor/toxicidad , Humanos , Mucosa Bucal/metabolismo , Mucosa Bucal/fisiopatología
17.
Toxicol In Vitro ; 52: 384-398, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30003980

RESUMEN

In vitro aerosol exposure of epithelial cells grown at the air-liquid interface is an experimental methodology widely used in respiratory toxicology. The exposure depends to a large part on the physicochemical properties of individual aerosol constituents, as they determine the transfer kinetics from the aerosol into the cells. We characterized the transfer of 70 cigarette smoke constituents from the smoke into aqueous samples exposed in the Vitrocell® 24/48 aerosol exposure system. The amounts of these compounds in the applied smoke were determined by trapping whole smoke in N,N-dimethylformamide and then compared with their amounts in smoke-exposed, phosphate-buffered saline, yielding compound specific delivery efficiencies. Delivery efficiencies of different smoke constituents differed by up to five orders of magnitude, which indicates that the composition of the applied smoke is not necessarily representative for the delivered smoke. Therefore, dose metrics for in vitro exposure experiments should, if possible, be based on delivered and not applied doses. A comparison to literature on in vivo smoke retention in the respiratory tract indicated that the same applies for smoke retention in the respiratory tract.


Asunto(s)
Técnicas de Cultivo de Célula , Células Epiteliales/efectos de los fármacos , Humo/efectos adversos , Productos de Tabaco , Pruebas de Toxicidad/métodos , Aerosoles , Humo/análisis
18.
Am J Dent ; 30(6): 316-322, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29251454

RESUMEN

PURPOSE: To study the effects of cigarette smoke (CS) on the discoloration of dental resin composite compared with the aerosol from a heat-not-burn tobacco product, the Tobacco Heating System 2.2 (THS2.2). METHODS: A total of 60 discs were prepared from three commercial resin composites: Durafill VS (DVS), Filtek Supreme Ultra (FSU) and Tetric EvoCeram BulkFill (TEC). Twenty discs of each composite were divided into two groups and exposed to CS from 20 reference cigarettes (3R4F) or aerosol from 20 THS2.2 tobacco sticks per day for 3 weeks. Color, gloss and surface roughness of the composite discs were measured at baseline and after exposure and brushing with toothpaste at 1, 2 and 3 weeks. RESULTS: Color differences from the baseline (ΔE) were on average 27.1 (±3.6) in 3R4F and 3.9 (±1.5) in the THS2.2 group after 3 weeks of exposure (P< 0.0001). TEC (30.4±1.4 and FSU (28.0 ±2.5) exhibited more discoloration than DVS (23.0±1.2) in the 3R4F group (P< 0.0001). FSU (2.6 ±0.5) showed significantly less discoloration than TEC (5.3±1.5) in the THS2.2 group (P< 0.0001). Surface roughness of resin composites was not affected by either CS or THS2.2 aerosol, while surface gloss increased in the composite discs with more severe discoloration. CLINICAL SIGNIFICANCE: Cigarette smoke caused significant discoloration of dental composite resins. Reducing or eliminating the deposits derived from combustion of tobacco has the potential to minimize the impact of smoking on the color of composite resin restorations.


Asunto(s)
Fumar Cigarrillos/efectos adversos , Resinas Compuestas , Decoloración de Dientes , Color , Ensayo de Materiales , Humo , Fumar , Propiedades de Superficie , Productos de Tabaco
19.
Inhal Toxicol ; 29(3): 113-125, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28470142

RESUMEN

Inhalation of aerosols generated by electronic cigarettes leads to deposition of multiple chemical compounds in the human airways. In this work, an experimental method to determine regional deposition of multicomponent aerosols in an in vitro segmented, realistic human lung geometry was developed and applied to two aerosols, i.e. a monodisperse glycerol aerosol and a multicomponent aerosol. The method comprised the following steps: (1) lung cast model preparation, (2) aerosol generation and exposure, (3) extraction of deposited mass, (4) chemical quantification and (5) data processing. The method showed good agreement with literature data for the deposition efficiency when using a monodisperse glycerol aerosol, with a mass median aerodynamic diameter (MMAD) of 2.3 µm and a constant flow rate of 15 L/min. The highest deposition surface density rate was observed in the bifurcation segments, indicating inertial impaction deposition. The experimental method was also applied to the deposition of a nebulized multicomponent aerosol with a MMAD of 0.50 µm and a constant flow rate of 15 L/min. The deposited amounts of glycerol, propylene glycol and nicotine were quantified. The three analyzed compounds showed similar deposition patterns and fractions as for the monodisperse glycerol aerosol, indicating that the compounds most likely deposited as parts of the same droplets. The developed method can be used to determine regional deposition for multicomponent aerosols, provided that the compounds are of low volatility. The generated data can be used to validate aerosol deposition simulations and to gain insight in deposition of electronic cigarette aerosols in human airways.


Asunto(s)
Aerosoles/farmacocinética , Modelos Anatómicos , Sistema Respiratorio/metabolismo , Administración por Inhalación , Glicerol/farmacocinética , Humanos , Tamaño de la Partícula
20.
Toxicol In Vitro ; 42: 263-272, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28457873

RESUMEN

BACKGROUND: The Vitrocell® 24/48 is an advanced aerosol exposure system that has been widely used and characterized for exposure studies of cigarette smoke, but not for exposure to liquid aerosols with a low gas-vapor phase content such as the ones generated by electronic cigarettes. An experimental system characterization for this specific application was therefore performed. METHODS: Glycerol model aerosols of different particle size distributions, produced by a condensation monodisperse aerosol generator, were used for exposing small volumes of phosphate-buffered saline in the Vitrocell® 24/48. Disodium fluorescein, added as a tracer in the aerosol, allowed the exact aerosol mass deposition to be quantified fluorometrically. RESULTS: The aerosol mass delivery efficiency within the system showed variations in the range of ±25%. Aerosol dilution was not fully reflected in aerosol delivery, the achieved aerosol delivery should therefore be determined experimentally. Quartz crystal microbalances underestimated the deposition of liquid aerosols. Unequal delivery of particles of different sizes was detectable, although this effect is unlikely to be relevant under applied experimental conditions. CONCLUSIONS: The Vitrocell® 24/48 aerosol exposure system can be used for exposures to liquid aerosols, such as those generated by electronic cigarettes. However, our results indicate that, compared with aerosol studies of cigarettes, a higher variability is to be expected.


Asunto(s)
Aerosoles/administración & dosificación , Pruebas de Toxicidad/instrumentación , Aerosoles/química , Diseño de Equipo , Glicerol/administración & dosificación , Glicerol/química , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...